BAT R/T Millennium-S1

 Ratemeter / Totalizer with RS232 Serial PortInstallation and Operating Instructions

KESSLER-ELLIS PRODUCTS
10 Industrial Way East
Eatontown, NJ 07724
800-631-2165 • 732-935-1320
Fax: 732-935-9344

CONTENTS

Specifications 1
Battery Installation and Replacement 3
Dimensions 4
Theory of Operation 5
Wiring 5
Typical Applications 5
Definitions 6
Programming Flowchart 9
Operation 12
Error Messages 13
Analog Output Calibration 13
Warranty 14
Decoding Part Number 14

SPECIFICATIONS

Description

Featuring 5 digits of rate and 8 digits of total, the BAT R/T Millennium edition (BATRT-M) is a battery or loop powered indicator capable of accepting magnetic pickup, DC pulse and switch closure inputs from pulse producing flowmeters. The unit can be ordered with an optional $4-20 \mathrm{~mA}$ output. The BATRT-M uses the $4-20 \mathrm{~mA}$ loop to provide power when this output is used.

Specifications

DISPLAY:

Rate Display: (selectable decimal)
5 Digits (99999), 0.35" High, Display updates once per second with battery power, 8 X per second with DC or Loop power
Rate Descriptors: /SEC, /MIN, /HR
/MIN, /HR, /DAY with "D" option
Min. Input Frequency: 0.01 Hz to 10 Hz (selectable delay of 0.1 to 99.9 seconds) Selectable Rate Display Damping
Totalizer Display: (selectable decimal)
8 Digits (99999999), 0.2" High
Totalizer Descriptors: GAL, LIT, FT3, M3, "blank" GAL, BBL, MCF, M3, "blank" with "D" option
Warning Displays: Low battery warning

PULSE OUTPUT:

The pulse output advances with the least significant digit of the totalizer or decimal multiples there of (see Pulse scale divider).
Type: Isolated photomos relay
Max. voltage (off state): 30 VDC
Current (on state): 100 mA
Pulse Duration: Selectable $0.5,0.25,0.125,0.0625$ seconds
Pulse Scale divider (Pulscale): User selectable, $\div 1$, $\div 10, \div 100$ or OFF
NOTE: Select OFF for max. battery life.

ACCURACY:

0.01% Reading, ± 1 count
Temperature Drift: $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Worst Case
SAFETY LISTINGS (Mounting Styles 3, 3NE, 3SS):
CSA File 091109 (cert. 1120094)
UL/C-UL File E225832
CLASS 1, DIV 1, GROUPS B, C, D
Additional "enclosure only" approvals available for ATEX and IEC

CAUTION; KEEP COVER TIGHT WHILE CIRCUITS ARE ALIVE, A SEAL SHALL BE INSTALLED WITHIN 450 mm (18 in) OF THE ENCLOSURE WHEN USED IN GROUP B ATMOSPHERES AND WITHIN 1.5m (5 ft) WHEN USED IN GROUP C ATMOSPHERE

CAUTION; PLUG ANY UNUSED CONDUIT ENTRIES WITH A CERTIFIED CONDUIT PLUG

AVERTIR; GARDER LA COUVERTURE TENDUE PENDANT QUE CIRCUITS SONT VIVANTS, UN CACHET SERA INSTALLE DANS 450 mm (18 dans) DE LA CLOTURE QUAND UTILISE DANS LES ATMOSPHERES DE B DE GROUPE ET DANS 1.5 m (5 ft) QUAND UTILISE DANS L'ATMOSPHERE DE C DE GROUPE

AVERTIR; BOUCHER LES ENTREES INUTILISEES DE CONDUIT AVEC UN BOUCHON DE CONDUIT CERTIFIE

* Slow input pulse rates, large delay setting and internal math operations may delay the update rate of information.

ENVIRONMENTAL:
OPERATING TEMPERATURE
$-4^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right)$ to $+158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$
Extended Temp: $-22^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right)$ to $+158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$
HUMIDITY
0-90\% Noncondensing

MOUNTING STYLES:

0- Circuit Board- OEM option (consult factory)
1- Panel Mount - NEMA 4X Front
2- Wall Mount - NEMA 4X Enclosure
(keypad mounted behind clear cover)
3- Explosion Proof - Class I, Division I, Groups B, C \& D
Class II, Division I, Groups E, F \& G
3NE- Explosion Proof -White, Includes Third Conduit Entry
Class I, Division I, Groups B, C \& D
Class II, Division I, Groups E, F \& G
3SS- Explosion Proof -Stainless Steel
Class I, Division I, Groups B, C \& D
Class II, Division I, Groups E, F \& G
5- Wall Mount - NEMA 4X Enclosure
(keypad mounted on cover)
6- Double Ended Explosion Proof -
Class I, Division I, Groups B, C \& D
Class II, Division I, Groups E, F \& G
(contact factory for details)
NOTE: Meter mounting kits available for styles 2, 3, 5 and 6 Consult Factory

NPUTS:

MAGNETIC PICKUP INPUT
Frequency Range: 0 to 3500 Hz
Trigger Sensitivity: $10 \mathrm{mV} \mathrm{p}-\mathrm{p}$
Over Voltage Protected: ± 30 VDC
OPTO-ISOLATED DC PULSE INPUT
High (logic 1): 4-30 VDC
Low (logic 0): Less Than 1 VDC
Minimum Current: .5 mA
Hysteresis: 0.4 VDC
Frequency Range: 0 to 5 kHz
Min. Pulse Width: 0.1 msec
CONTACT CLOSURE INPUT (contact closure to common)
Internal Pullup Resistor: $100 \mathrm{~K} \Omega$ to +3.6 VDC
High (logic 1): Open or 4-30 VDC
Low (logic 0): Less Than . 5 VDC
Internal Switch Debounce Filter: 0 to 40 Hz
NOTE: Sustained contact closure will shorten battery life.
RESET INPUT (contact closure to common)
Internal Pullup Resistor: $100 \mathrm{~K} \Omega$ to +3.6 VDC
High (logic 1): Open or 4-30 VDC
Low (logic 0): Less Than . 5 VDC
Minimum On : 25 msec
NOTE: Sustained contact closure will shorten battery life.
K-FACTOR
Range: 0.001 to 99999999
Decimal Point Locations: $\mathrm{XXXX} . \mathrm{XXXX}$ to XXXXXXXX
20 Point Linearization Option (10 Point with Data Logger option) This feature allows the user to enter 20 different frequencies with 20 different corresponding K-Factors to linearize non linear signals.

ANALOG OUTPUT OPTION:

Type: 4-20 mA follows rate display, Two wire hookup
Accuracy: 0.025\% Full Scale at $20^{\circ} \mathrm{C}$
Temperature Drift:
$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Typical
Reverse Polarity Protected
Update Rate: 8 times/second
NOTE: The BATRT-M uses the $4-20 \mathrm{~mA}$ loop power as its primary power source when this option is used. The battery is still required for standby battery operation.

SPECIFICATIONS

(continued)

Power:

BATTERY POWERED
Supplied with 1 or 2 C size Lithium battery pack.
EXTERNAL POWER INPUT
Voltage: 8.5 to 30 VDC
Current: Less than 5 mA
Supplied with 1 C size lithium battery
Protection: Reverse Polarity Protection on DC Power Input
LOOP POWERED
Voltage: 8.5 to 30 VDC
Supplied with 1 or 2 C size lithium battery(ies)
Protection: Reverse Polarity Protection on Current Loop
Loop Burden: 8.5 V maximum

BATTERY LIFE EXPECTANCY:

Expected Years of Operation for BATRT-M of various powering options at equipment duty cycles

MODEL	RUN TIME			
	Idle	2hrs/day	8hrs/day	24hrs/day
BATRT-M-A	10 yrs	10 yrs	10 yrs	9.1 vrs
BATRT-M-A-4	10 yrs	10 yrs	10 yrs	8.4 yrs

External or loop power

NOTE: Battery shelf life is rated at 10 years by manufacturer Life expectancy based on rated battery capacity at $20^{\circ} \mathrm{C}$
The above table is shown with pulse output inactive.
Use of pulse output shortens battery life.
Example: A pulse output of 0.06 sec . duration, once per second, would derate the battery life by 20%.

IDATA STORAGE:

Setup Information: Stored in flash memory
Totalizer: Stored in battery backed RAM but can be saved to flash memory by operator for recall after battery change out.

COMMUNICATIONS OPTION (S1):
RS232 SERIAL SETUP SOFTWARE OPTION:
This option enables you to access a variety of process parameters through serial communications. PC compatible communications software is included with this option. With this software and a BAT R/T-M Serial Adapter Cable (BSAC1) you will be able to setup the BAT R/T-M through your PC.

RS-485 MODBUS and DATA LOGGER OPTION (S2):

The optional RS-485 card utilizes Modbus RTU protocol to access a variety of process parameters. The Data Logger stores the totalizer to flash memory once every 24 hours at the time you set. The data logger can hold 27 days of totals, on the 28th day the oldest total in the logger is dropped. Requires external DC power: 6-28VDC (input is reverse polarity protected) Current Draw:

Receiving: 2 mA
Transmitting: 125 mA (instantaneous peak)

BATTERY INSTALLATION and REPLACEMENT

Battery Installation:

All BATRTM models are shipped without the battery(ies) installed. This preserves battery life when the unit is not in service. When using external BATPACK, mount within 12" and plug connector into 3 position square posts (see Fig 1). Polarity is not a concern because center is common.

To install the battery, begin by locating the battery holder. The BATRTM $-2,3,3 \mathrm{NE}, 3 \mathrm{SS}, 5$ and 6 require opening the enclosure cover and removing the BATRTM to expose the battery holder.

The plus terminal of the battery is marked with a (+) symbol stamped into the battery holder. Be sure to install the battery(ies) correctly.

Install battery(ies) to begin setup procedure. See Programming Flowchart to setup desired operating parameters.

Battery Replacement:

The BAT R/T-M has a battery monitor feature which illuminates when the lithium battery voltage approaches its end of life. A descriptor, "BAT", illuminates when the battery voltage falls below this predetermined value. The low battery detector operates correctly with all power options.

The battery, or batteries, should be replaced within several weeks of the first occurrence of low battery warning, "BAT". Left unattended, the unit may become inaccurate, cease to operate or malfunction.

Before replacing the battery(ies), Press the \leftarrow (left arrow) key to save the totalizer. The display will show "SRuE totili". This will save the current total value and the total will resume from this value when the new battery(ies) is(are) installed. NOTE: If the display starts to flash after the "5RuE totRL" message times out, press the "E" (enter) key. If the message "E FLASH" is displayed, then there was not enough power left to save the setup and totalizer to flash memory. At this point you must record the totalizer and setup information and re-enter the setup data after the new battery(ies) is(are) installed.

Install new battery(ies) as described above.

Fig 1

DIMENSIONS

NOTE: Additional entry holes may be provided on styles 2 and 5.

Flow rate equation:

Flow Rate Indication $=\frac{\text { Input Frequency }}{\text { FAC }} \times$ Time Scaler

Where Time Scaler is equal to: 1 for rate per second read out 60 for rate per minute read out 3600 for rate per hour read out 86400 for rate per day read out "D" option Only

Flow total equation:

20 Point Linearization Option:

A 20 point linearization table is used to construct a curve describing the relationship of K-Factor and input frequency. The measured input frequency is used to access the table. A linear interpolation of adjacent point pairs is used to arrive at the K-Factor at that input frequency. The flow rate and total are then computed based upon the K-Factor for that measurement sample.
NOTE: For best performance and resolution choose as many decimal places as possible in the K-Factor. Example: Enter a K-Factor of 1 as 1.000.

WIRING

Several typical applications of the BAT R/T-M are shown below. Please observe that the various pulse inputs and power options may be intermixed in many ways to solve common applications. The isolated pulse output may be freely used so long as proper polarity is observed.

Caution: When 4-20 mA loop option is provided, the power wiring to the loop power option should always be to terminals (+) 12 and (-) 11. Accidental wiring to (+) 12 and (-)6 should be avoided since excessive current flow may result with power option "C".

Caution: The magnetic pickup input and contact closure input require isolated sensors for proper operation. Accidental connections to earth may result in erroneous operation of the analog output and/or excessive current flow with power option "C".

Caution: Accidental connections from circuit common (3 or 6) to earth or terminal (11) may result in erroneous operation of the analog output and/or excessive current flow with power option "C".

TYPICAL APPLICATIONS

DEFINITIONS

SRuE tot Rit: (Save Total) Press the E key while the unit is running to save the total value. The display will show "SRuE tot Rit" for a few seconds. This is a very useful "scratch pad" to save and restore total when replacing the battery(ies)

Ent CodE: (enter code) This prompt will only appear if the panel lock is ON. Press the \uparrow key to increment each digit. Press the \leftarrow key to step to the next digit to the left. Press the \mathbf{E} key to enter the 5 digit code. If the entered code is correct, the display will advance to the next menu prompt (CLr tot). If incorrect, the display will return to the run mode.

CLr tot: (clear total) Clears (resets) the totalizer. Press the \mathbf{E} key to clear the total and return to the run mode. Press the \mathbf{M} key to skip and advance to the next menu selection.

FotE: (factor decimal) Sets the decimal location for the factor. This location is restricted to 3 places (99.999). The use of this decimal automatically limits the number of decimal locations allowable in the rate and total to acceptable ranges. Press the \leftarrow key to move the decimal. Press the \mathbf{E} key to select the displayed decimal location.
NOTE: For best performance and resolution choose as many decimal places as possible in the K-Factor. Example: Enter a K-Factor of 1 as 1.000 .

FRE: LINERF/EOPont: (factor type) This prompt will only appear if the unit is ordered with the 20 point linearization option. The 20 Pont linearization selection is recommended for flow meters whose K -factors change with different flow rates. This selection allows users to enter up to 20 different frequencies with 20 corresponding K-factors for different flow rates. The LimERr setting is used for flow meters whose output is linear over its' entire operating flow range. Press the \uparrow key to step to the desired choice. Press the \mathbf{E} key to enter the displayed factor type.
no / UES SEL Pnt5: (set 20 point?) This prompt allows the user to skip the 20 point setup routine. Select IES for initial setup or to change the present 20 point values. Select no to skip and keep the existing values.

FRI: : (factor) This prompt appears on all units with linear inputs. The Factor is the number of pulses per unit volume for the flow sensor. The pulses/unit volume is implied by the totalizer descriptor when a descriptor is used. The implied units for the Factor are then as follows:
Standard"D" Option

GAL	pulses/gallon	GAL	pulses/gallon
LIT	pulses/liter	BBL	pulses/BBL
FT3	pulses/ft3	MCF	pulses/MCF
M3	pulses/M3	M3	pulses/M3

Factors from 0.0001 to 99999999 may be used. A "0" value for the factor is not allowed and the unit will default to " 1 " in LSD if a " 0 " entry is attempted. The factor is displayed on the subsidiary (lower) display. Press the \uparrow key to increment each digit. Press the \leftarrow key to step to the next digit to the left. Press the \mathbf{E} key to enter the displayed factor.
F_{r} : : (frequency for point \#) This prompt will only appear when 20 point selected. It sets the frequency for each of the 20 points (\#). Press the \uparrow key to increment each digit. Press the \leftarrow key to step to the next digit to the left. Press the E key to enter the desired frequency for point \#.

FFI[茾 : (factor for point \#) This prompt will only appear when 20 point selected. It sets the factor for each of the 20 points (\#). Press the \uparrow key to increment each digit. Press the \leftarrow key to step to the next digit to the left. Press the \mathbf{E} key to enter the desired factor for point \#.
NOTE: The display will advance to the next point (Fr\#) after each entry of the Fr \& Fac until all 20 points are complete. entering a 0 in the Fr or fac setting will advance the display to the next menu prompt (tdec).

DEFINITIONS

todEC: (totalizer decimal) Sets the decimal location for the totalizer. The totalizer decimal is not a dummy decimal and will scale the totalizer display accordingly. (i.e. if the tdec is set in the tenths position (1234567.8), 100 will be displayed as 100.0). The location of the decimal point allows for greater resolution of both the totalizer display and the pulse output. The pulse output advances at a rate dependent on the least significant digit of the totalizer. The totalizer decimal location is restricted to a maximum of 4 places (1234.5678). However, the number of totalizer decimal locations allowable is reduced with each decimal place added to the factor decimal. Press the \leftarrow key to move the decimal. Press the \mathbf{E} key to enter the displayed decimal location.

Note: The selection of the factor decimal point limits the available selections for the number of decimal points available for the totalizer. This is automatic. Enter your selection of the Factor's decimal point before entering the totalizer decimal point to assure the proper selection of the totalizer decimal point has been made.
tot dES[: (totalizer descriptor) This allows you to illuminate one of the available descriptors on the display (STD: GAL, LIT, FT3, M3 or "blank"; "D" option: GAL, BBL, MCF, M3, "blank"). Press the \uparrow key to select the descriptor. Press the \mathbf{E} key to enter the selected descriptor.
r SCRH:E: (ratemeter scaling) Sets the timebase for the rate readout. Choose rate per hour (Hr-5), minutes (nnin) or seconds (SEC). (Days will appear on units ordered with the "D" (rate per day) option.) The scale setting is shown on the main (upper) display. Press the \uparrow key to step to the desired choice. Press the \mathbf{E} key to enter the displayed scale setting.
Note: A rate descriptor corresponding to the above choice will be illuminated on the display.
r dECLoL: (ratemeter decimal location) Sets the decimal location for the ratemeter information. The ratemeter decimal is not a dummy decimal and will scale the rate display accordingly. (i.e. if the r decloc is set in the tenths position (123.4), 100 will be displayed as 100.0). The ratemeter decimal location is restricted to a maximum of 4 places (.1234). However, the number of ratemeter decimal locations allowable is reduced with each decimal place added to the factor decimal. Press the \leftarrow key to move the decimal. Press the \mathbf{E} key to enter the displayed decimal location.
Note: The flow rate indicator will flash " 99999 " if the computed flow rate exceeds the 99999 display capability of the indicator. Choose a new decimal point location to avoid this.
nor璘 NORMALIZING FACTOR - Normalizes (averages or dampens) the flow rate data being received. Enter a value from 0 to 9 . Higher settings provide more normalizing (averaging) for a more stable display. Derived from the equation:
(Old Data x "NOR" + New Data)
("NOR" + 1)
dELRU: (delay) Sets the amount of time (0.1 to 99.9 seconds) that the unit will "look" for valid input data. If pulses are not detected within this "window", the rate will display 0 . The display will update once every second as long as the unit receives valid data within a second. Some internal mathematics may delay this update. Press the \uparrow key to increment each digit. Press the \leftarrow key to step to the next digit to the left. Press the \mathbf{E} key to enter the displayed delay value.
out Lo: (out low) Sets the low setting for the 4-20 mA analog output. Key in the low rate value at which the unit will output 4 mA . Press the \uparrow key to increment each digit. Press the \leftarrow key to step to the next digit to the left. Press the \mathbf{E} key to enter the displayed out lo value.
out hi: (out high) Sets the high setting for the $4-20 \mathrm{~mA}$ analog output. Key in the high rate value at which the unit will output 20 mA . Press the \uparrow key to increment each digit. Press the \leftarrow key to step to the next digit to the left. Press the \mathbf{E} key to enter the displayed out hi value.

DEFINITIONS

(continued)
Pulschte: (pulse out scaling) This allows the unit to output a pulse for each least significant total count divided by
 the divider set at 1 , the unit will give a pulse out for every increment of the LSD displayed.
Note: For maximum battery life, turn the pulse output off when pulse output is not used.
Selecting the proper pulse output divider may be needed so that the pulse output does not exceed the maximum rate of the pulse output. If the pulse output pulses too quickly a flashing display will result. Pressing the " M " key will result in a display of an error message "E PULSE". Press the "E" key to return to the run mode.

P Lundth: (pulse width) Sets the pulse width of the pulse output. Selections are: $0.5(1 \mathrm{~Hz}), 0.25(2 \mathrm{~Hz}), 0.125(4 \mathrm{~Hz})$ or $0.0625(8 \mathrm{~Hz})$. This menu item is skipped if Pul.5CPLE is turned off.

Lot CodE: (lock code) Sets the 5 digit lock code to be entered when the unit prompts Ent CodE. This allows the user to gain access to the menu when the unit is locked. Press the \uparrow key to increment each digit. Press the \leftarrow key to step to the next digit to the left. Press the E key to enter the displayed code. Record this number for later use! LOCK CODE: \qquad
LoL unit: (lock unit) Sets the panel lock ON or OFF. Press the \uparrow key to select On or OFF. Press the \mathbf{E} key to enter the displayed selection.

OPERATION

A suitable pulse producing device or flow meter is wired to one of the three pulse inputs provided on the BAT R/T-M. Only one of these inputs is used in a given application. There are no connections to the two unused pulse inputs.

Isolated magnetic pickups may be connected to terminals 1 and 2 . Isolated contact closures may be connected to terminals 5 and 6. Any high level, DC pulse type may be connected to terminals $9(-)$ and 10(+).

Power to the unit may be provided by internal batteries, external DC, or the current loop. In all cases, the internal battery will provide for continued operation in the event primary power is lost.

Once properly wired, the operation of the BAT R/T-M is automatic.
The flow totalizer is updated once per second* with battery power, 8 times per second with DC or loop power. If no input counts are received the unit remains in a low power state to conserve power.

The flow total may be cleared by the front panel switch sequence or by a contact closure on the remote reset terminal to circuit common.

To reset the unit from the front panel, the following key sequence is required:
Press M "CLr tot" will be displayed (if the panel lock is on, the display will prompt "Ent CodE". Enter the proper code to advance to the (LLr Lot prompt)
Press E To clear the total. Unit will return to operation
The flow rate indicator will measure the flow rate once every second* with battery power, 8 times per second with DC or loop power and display the flow rate.

If the input pulses are not detected within the delay setting (0.1 to 99.9 seconds), a flow rate of 0 will be indicated.
The analog output will be scaled based on the user selected zero and full scale and the measured flow rate. The analog output is updated at the same time as the rate display.

The pulse output updates at the same rate as the total display in accordance with the instrument setup of pulse scaling.

* Slow input pulse rates, large delay setting and internal math operations may delay the update rate of information.. A faster update rate occurs when the unit is loop powered or externally powered.

ERROR MESSAGES

The BATRT-M is provided with extensive self checking which assists the user in the location of setup entry errors and in reporting malfunctions or unusual operating conditions. When an error occurs, the display will flash. Press any key to see the error message corresponding to the error that has occurred. Press any key again to acknowledge the error. (If the error can be eliminated by a change of setup values, the unit will automatically advance to the MENU so that the appropriate setup changes can be made).

Table - 2 illustrates the warning message, problem, and recommended corrective actions.
Diagnostic Error Messages Table-2

WARNING MESSAGE	CAUSE	CORRECTIVE ACTION
rRtE Er	Rate Low set higher than Rate Hi	Set Rate Hi greater than Rate Lo
FRE Err	Factor =0	Set in correct Factor
"BAT" Descriptor	Low Battery	Replace battery(ies)
E totRit	Total rollover	None required
E rRitE	Rate exceeds 99999	Use lower rate dec point
E Pui_SE	Pulse out Overflow	Use different pulse scaler or totalizer decimal point
E FLRSH	Save to flash memory failed	Write down displayed total and setup values if you are changing the battery. If total wasn't saved, it will display an arbitrary total when new battery is installed. In this case, reset the total to 0 and check the setup information.

ANALOG OUTPUT CALIBRATION

CAUTION: Performing the analog output calibration will erase all programming values. Please record all programmed values before beginning the analog output calibration

If the unit is equipped with the analog output option, the $4-20 \mathrm{~mA}$ has been accurately set to 4.000 and 20.000 mA by the factory. No calibration should be required.

The 4-20 mA output may be verified periodically by installing a digital milliamp meter(DMM) in series with the analog output and simulating a full scale or over range flow rate.

If the output is out of calibration, perform the following:
Remove power and/or disconnect battery(ies). Hold down the scroll (\uparrow) key and replace the battery. This will initialize the unit and advance to the analog output calibration mode. Connect a DMM set to read current in series with a power supply (8.5 to 30 volts DC) to TB12 (+) and TB11 (-). The output should read $4.000 \mathrm{ma}(\pm 0.005$). If it does not, Adjust the numbers on the display up or down until the output reads $4.000 \mathrm{ma}(\pm 0.005)$. Press the "E" key. The DMM should now read $20.000 \mathrm{ma}(\pm 0.005$). If it does not, Adjust the numbers on the display up or down until the output reads $20.000 \mathrm{ma}(\pm 0.005)$. Press "E" and the unit will return to the "RUN" mode.

